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SUMMARY: The epoxy alcohol exo-6-hydroxy-exo-4-oxatetracycloC6.2.1.O~z~7O3~'l- 

undec-9-ene (la) was synthesized by photooxygenation of dicyclopentadiene in 

the presence of Ti(OiPr),; vacuum flash pyrolysis (52OOC) of la resulted in 

3,4.epoxy-5-hydroxycyclopentene (2) as intermediate, which at elevated tempera- 

ture rearranged into the cis- and trans.-2,4-pentadienoic acids (8). 

3,4-Epoxy-5-hydroxycyclopenene (2). a potentially valuable "Baustein" for 

the preparation of prostaglandin type products"' in view of its high degree of 

functionality and three adjacent chirality centers, constitutes a challenging 

target molecule for organic synthesis. In view of our recent demonstration"' 

that olefins with allylic hydrogen can be directly functionalized into hydroxy 

epoxides by photooxygenation in the presence of titanium (IV) alcoholate cata- 

lysts, the reaction sequence in Es.1 offered an attractive route. Since the di- 
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rect hydroxy-epoxidation proceeds under high enantiomeric control when the 

Ti(IV)-catalyzed photooxygenation is conducted in the presence of tartrate 

ester as chiral auxiliary'2', the sequence in Eq.1 would provide for the means 

of obtaining the hydroxy epoxide 2 in enantiomeric excess. Furthermore. the 

utilization of pyrolysis techniques, especially the cracking of dicyclopenta- 

diene-derived substrates by the extrusion of cyclopentadiene, for the synthesis 

of sensitive products is well documented'"'. 

The photooxygenation of dicyclopentadiene in CHIC12 at 0 OC. using tetra- 

phenylporphine (TPP) as sensitizer, gave the two hydroperoxides 3a.b (95%) in 
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9:l ratio (3a/3b)."' Photooxygenation of dicyclopentadiene in the presence of 

catalytic amounts (ca. 10%) of Ti(OiPr), under the above conditions afforded 

indeed the expected exo-hydroxy epoxide la in 70% yield (isolated by silica gel 

flash chromatography using CHzCl; as eluent). Our material matched the repor- 

ted"' physical and spectral data. In addition, the allylic alcohol 4a (15%) 

and the diepoxide 6 (4%)"' were isolated. Control experiments revealed that 

the pure exo-hydroperoxide 3a") (obtained by silica gel chromatography eluting 

with CH2C12 and purified by Kugelrohr distillation, 80 OC at 0.1 Torr) gave on 

treatment with Ti(OiPr), in CH2C12 at 0 "C exo-hydroxy epoxide la (46%), alco- 

hol 4a (26%), dienone 5 (21%) and hydroxy diepoxyde 6 (7%). Sharpless epoxida- 

tion'aa' of the exo-alcohol 4a with t-butylhydroperoxide and VO(acac)z as cata- 

1 vst, gave quantitatively the exo-epoxy alcohol la (>90%) after Kugelrohr 

distillation (78-80 OC at 0.1 Torr). However, under similar Sharpless condi- 

tionsLab' the endo-alcohol 4b gave a mixture of the dienone 5 (48%) and the 

epoxy enone 7"' (52%), but no endo-hydroxy epoxide lb. Steric reasons must be 

responsible for the failure of transforming 4b or 3b into lb in the Ti(IV)- or 

V(V)-mediated oxygen transfers. 

The pyrolysis of the hydroxy epoxide la by subliming (75-80 OC at 0.1 

Torr) the substrate through a 60-cm long quartz tube required a minimum of ca. 

520 OC. Condensation of the effluent from the above pyrolysis into a dry ice 

trap afforded a 1:l mixture of the (El- and (Z)-2,4-pentadienoic acids (8) in 

50% yield (Es. l).'lo' Clearly, these pyrolysis temperatures were too high for 

the desired 3,4-epoxy-5-hydroxycyclopentene (2) to survive. 

The mechanistic scheme in Es. 2 offers a rational explanation for the 

y - a0 - do, _ aoH_ e-c”2H (Eq.2) 

OH 
2 = 8 = 

formation of the dienic acids 8. suggesting that the hydroxy epoxide 2 figured 

as intermediate in the interesting transformation la+8 (Eq. 1). It has been 

reported (lt) that 2,3-epoxycyclopenten-l-one gave on pyrolysis cx-pyrone via a 

sequence analogous to the first two steps in Es. 2. However, in the present 

case a facile 1,5-hydrogen shift and subsequent electrocyclic reversion gene- 
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rates the 2,4-pentadienoic acids 8 as final product. 

To realize our goal of preparing the 3.4-epoxy-5-hydroxycyclopentene (2) 

via the convenient synthetic sequence will require finding precursors with 

pyrolyze at more moderate temperatures (<200 'C). For this purpose C2+21 pho- 

toadducts of cyclopentadiene and anthracene derivatives are being presently 

explored as viable precursors. 
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